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The normalization model has been applied to explain neural activity
in diverse neural systems including primary visual cortex (V1). The
model’s defining characteristic is that the response of each neuron is
divided by a factor that includes a weighted sum of activity of a pool
of neurons. Despite the success of the normalization model, there
are three unresolved issues. 1) Experimental evidence supports the
hypothesis that normalization in V1 operates via recurrent amplifi-
cation, i.e., amplifying weak inputs more than strong inputs. It is
unknown how normalization arises from recurrent amplification. 2)
Experiments have demonstrated that normalization is weighted such
that each weight specifies how one neuron contributes to another’s
normalization pool. It is unknown how weighted normalization
arises from a recurrent circuit. 3) Neural activity in V1 exhibits com-
plex dynamics, including gamma oscillations, linked to normalization.
It is unknown how these dynamics emerge from normalization.
Here, a family of recurrent circuit models is reported, each of which
comprises coupled neural integrators to implement normalization via
recurrent amplification with arbitrary normalization weights, some
of which can recapitulate key experimental observations of the dy-
namics of neural activity in V1.

computational neuroscience | recurrent neural network | V1 |
normalization | gamma oscillation

The normalization model was initially developed to explain
stimulus-evoked responses of neurons in primary visual cor-

tex (V1) (1–7) but has since been applied to explain neural ac-
tivity and behavior in diverse cognitive processes and neural
systems (see SI Appendix for references). The defining charac-
teristic of normalization is that the response of each neuron is
divided by a weighted sum of the activity of a pool of neurons
(Fig. 1A). In V1, this normalization pool includes neurons se-
lective for different visual stimulus features and spatial positions
(i.e., receptive-field locations).
The normalization model mimics many well-documented

physiological phenomena in V1 (Fig. 1 B and C) and their per-
ceptual analogs (see SI Appendix for references). 1) Responses
saturate (level off) when increasing the contrast of a preferred
orientation test stimulus (e.g., a grating restricted to a neuron’s
receptive field [RF]) (Fig. 1B, blue curve). 2) Responses to a
nonpreferred orientation are smaller than responses to the
preferred orientation by a constant scale factor, saturating at the
same contrast, not the same firing rate, for preferred and non-
preferred stimuli (Fig. 1B, orange vs. blue curves). 3) Responses
to two or more stimuli presented together are much less than the
linear sum of the individual responses: cross-orientation sup-
pression when a mask stimulus (e.g., a grating of fixed contrast)
that is orthogonal to the preferred orientation is superimposed
with a preferred-orientation test stimulus (Fig. 1C, yellow vs.
blue curves); and surround suppression when a mask stimulus is
added in the region surrounding a neuron’s RF. Different stimuli
suppress responses by different amounts (see SI Appendix for
references), suggesting that normalization is “tuned.” The nor-
malization weights specify the contribution of one neuron to
another’s normalization pool, determining the tuning.

Normalization has been shown to serve a number of functions
in a variety of neural systems including automatic gain control
(needed because of limited dynamic range), simplifying readout,
conferring invariance with respect to one or more stimulus di-
mensions (e.g., contrast, odorant concentration), switching between
averaging vs. winner-take-all, contributing to decorrelation and
statistical independence of neural responses, stabilizing delay-period
activity, and facilitating learning (see SI Appendix for references).
Neural activity in V1 exhibits complex dynamics linked to nor-

malization. The rate of response increase following stimulus onset
is typically faster than the decrease following stimulus offset (8).
The rate of response increase is also stimulus dependent: faster for
high-contrast stimuli and for stimuli in the center of the RF (8).
The timing of response suppression depends on its strength (9).
Temporal-frequency tuning depends on stimulus contrast, and
simple-cell response phase depends on contrast (6, 10–13).
Complex dynamics are evident also in the combined activity (e.g.,
as measured with local field potentials [LFPs]) of populations of
neurons. LFPs exhibit gamma oscillations (∼30 to 80 Hz) that
have been linked to normalization (14–16). Oscillation amplitude
and frequency depend systematically on stimulus contrast, size,
and spatial pattern (14, 15, 17–30).
The circuit mechanisms underlying normalization are not well

understood. Experimental evidence supports the hypothesis that
normalization operates via recurrent amplification, i.e., amplifying
weak inputs more than strong inputs (31–34). The recurrent am-
plification hypothesis is also supported by anatomy: cortical cir-
cuits are dominated by recurrent connections (35–40). We have
known since we first introduced the normalization model that it
can be implemented in a recurrent circuit (4, 5). Since then,
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several hypotheses for the circuit mechanisms underlying nor-
malization have been proposed, including shunting inhibition,
synaptic depression, and inhibition-stabilized networks (6, 13,
41–46). See also refs. 47–49 for precursors to these circuit models.
However, these models do not rely on recurrent amplification to
achieve normalization and/or they do not exhibit complex dy-
namics (including gamma oscillations) linked to normalization
(Discussion). Furthermore, these previous models only approxi-
mate weighted normalization; this has practical consequences for
making experimentally testable predictions and for fitting data
(Discussion).
Here, we introduce and characterize a family of dynamical

systems that implement normalization with recurrent amplifica-
tion. When the input drive is constant over time, each of the re-
current circuits in this family exhibits output responses that follow
the normalization equation exactly, with arbitrary (nonnegative)
normalization weights. Each model in this family is expressed as a
coupled system of neural integrators, composed of two classes of
neurons: principal cells and modulator cells. The key idea is that
the amount of recurrent amplification in the principal cells de-
pends inversely on the responses of the modulator cells. When the
input is weak, the modulator cells have small responses and there
is a large amount of recurrent amplification. When the input is
strong, the modulator cell responses are large, which shuts down
the recurrent amplification. The various models in this family of
dynamical systems imply different circuits, some of which reca-
pitulate the complex dynamics of V1 activity, including gamma
oscillations. Although we focus on V1, this family of models is
applicable to many neural systems (Discussion).
A preliminary version was posted on a preprint server (50).

MATLAB code is available at hdl.handle.net/2451/61045 (51).

Results
Recurrent Normalization. Following our previous work (52, 53),
responses of a population of V1 neurons are modeled as dy-
namical processes that evolve over time in a recurrent circuit
(Fig. 2). The output firing rates of the principal cells depend on
the sum of two terms: 1) input gain (Fig. 2, orange) multiplied by
input drive (Fig. 2, blue), and 2) recurrent gain (Fig. 2, purple)
multiplied by recurrent drive (Fig. 2, green). The input drive is a
weighted sum of the responses of the population of input neu-
rons, and the input gain is specified by a constant. These input
neurons are presumed to be in the lateral geniculate nucleus
(LGN) of the thalamus, which, in turn, receive their inputs from
neurons in the retina. The recurrent drive is a weighted sum of
principal cell responses, and the recurrent gain depends on the
modulator cell responses (“modulator” refers to a multiplicative

computation, not to neuromodulators). Modulator cell responses
depend on the principal cell responses (Fig. 2, purple).
There are two nested recurrent loops that oppose each other.

1) Recurrent drive: The recurrent drive is a weighted sum of the
principal cell responses, and the principal cell responses depend
on the recurrent drive (Fig. 2, green). 2) Recurrent gain: The
recurrent gain depends inversely on the modulator cell re-
sponses, and the modulator cell responses depend on a sum of
principal cell responses (Fig. 2, purple). The recurrent drive is
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Wzx

W y

yj

b0

W

uj

aj

xk+1

yj+1

xk xk+2

yj+2 yj+3

zj

j

input drive

recurrent 
drive

recurrent gain

xk+3

input gain

output responses

steady state 
output responses

input 
gain

input 
drive

recurrent 
gain

recurrent 
drive= +
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Heeger and Zemlianova PNAS | September 8, 2020 | vol. 117 | no. 36 | 22495

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
6,

 2
02

1 

http://hdl.handle.net/2451/61045


www.manaraa.com

multiplied by the recurrent gain so that the modulators control
the amount of recurrent amplification. Increasing the principal
cell responses causes the modulator cells to increase their re-
sponses, which causes the amount of recurrent amplification to
decrease. Therefore, as the activity of the principal cells increase,
the first recurrent loop increases the amount of recurrent am-
plification, while the second loop decreases the amount of re-
current amplification. These two recurrent loops oppose each
other such that the activity of the circuit may achieve a fixed
point at which the neural activity is normalized. The responses at
this fixed point typically exhibit one of two kinds of dynamics. If
the modulator cells are sluggish, then the principal cells can
exhibit an initial transient overshoot before achieving the fixed
point. If instead the modulator cells have a short time constant
and a delay, then the fixed point may be unstable and the re-
sponses may exhibit oscillations.
This circuit agrees with experimental results suggesting that nor-

malization operates via recurrent amplification (31–34). The recurrent
drive involves both excitation and inhibition (Fig. 2, green solid and
dashed lines, respectively). The modulator cells control the amount of
recurrent amplification (Fig. 2, purple line with circle head). Both
excitatory and inhibitory recurrent signals are amplified by an amount
that is controlled by the modulator cells (Fig. 2, purple).
The remainder of this subsection walks through the equations

of the dynamical system corresponding to the circuit model in
Fig. 2 (see SI Appendix for additional details). We then dem-
onstrate that this model mimics experimental observations of the
dynamics of neural activity. We present the model as a compu-
tational theory for the computations performed by neural circuits
in V1 (but see Table 1 and Discussion for possible mechanisms).
Principal cell responses are as follows (see SI appendix of ref.

53 for a primer on neural integrators and Table 1 for mathe-
matical symbols):

τv
dvj
dt

= −vj + ( b0
1 + b0

)zj + ( 1
1 + aj

)ŷj, [1]

yj = vj⌊ ⌋2, [2]

z = Wzxx, [3]

ŷ = Wŷy
̅̅̅
y

√
. [4]

Vector y = (y1, y2,. . ., yj,. . ., yN) represents the firing rate re-
sponses of the principal cells, where the subscript j indexes
different neurons in the population, with different RF centers,
orientation preferences, and spatial and temporal phases. The
underlying membrane potentials of the principal cells are rep-
resented by vector v. Membrane potential of the jth principal
cell vj depends on a sum of two terms (Eq. 1): 1) input gain
multiplied by input drive zj and 2) recurrent gain multiplied
by recurrent drive ŷj. The input drive zj is a weighted sum of
LGN inputs (Eq. 3 and Fig. 2, blue; see SI Appendix for de-
tails). The rows of the weight matrix Wzx determine the spatial
RFs of the simple cells (SI Appendix, Fig. S1 B–D and see SI
Appendix for details). The recurrent drive ŷj is a weighted sum
(with recurrent weights Wŷy) of the square root of the princi-
pal cell responses yj (Eq. 4 and Fig. 2, green; see SI Appendix
for details). The input drive and the recurrent drive are each
multiplied by a gain factor. The input gain is specified by
a constant b0. The recurrent gain depends on the responses
of the modulator cells aj, as detailed below. Half-squaring
(half-wave rectification and squaring) in Eq. 2 is an expansive
nonlinearity that approximates the transformation from the
membrane potential of the principal cells to their firing rates.
The square root in Eq. 4 is a compressive nonlinearity that
approximates a transformation from firing rates to synaptic
currents.

Table 1. Mathematical notation

Symbol Description Possible mechanism

x = (x1, x2,. . ., xi,. . ., xM) Inputs Firing rates of LGN cells
y = (y1, y2,. . ., yj,. . ., yN) Principal cell responses Firing rates of pyramidal cells
v = (v1, v2,. . ., vj,. . ., vN) Principal cell membrane potential

(deviation from rest)
Input drive and recurrent drive computed in separate

compartments of dendritic tree
z = (z1, z2,. . ., zj,. . ., zN) Input drive Dendritic computation, sum of synaptic currents
ŷ = (ŷ1, ŷ2,. . ., ŷj,. . ., ŷN) Recurrent drive Dendritic computation, sum of synaptic currents
Wzx Input weight matrix (NxM): each row corresponds

to the spatial RF of one principal cell
Excitatory and inhibitory (i.e., positive and negative) synaptic

weights
Wŷy Recurrent weight matrix: each row determines

the recurrent drive for one principal cell
Excitatory and inhibitory (i.e., positive and negative) synaptic

weights
a = (a1, a2,. . ., aj,. . ., aN) Modulator cell responses and recurrent gain Firing rates of inhibitory neurons (proportional to membrane

depolarization), each of which determines conductance of
the dendritic compartment of a principal cell receiving that
cell’s recurrent drive

u = (u1, u2,. . ., uj,. . ., uN) Responses of second population of modulator cells Firing rates of a type of excitatory neurons (proportional to
membrane depolarization, above a spontaneous firing rate)

W and wjk ≥ 0 Normalization weight matrix W comprising
normalization weights wjk

Excitatory synaptic weights

τv, τa, τu Intrinsic time constants of each of the
corresponding cell classes

Membrane capacitance and conductance

b0 > 0 Input gain (constant) Conductance of the dendritic compartment of the principal
cells receiving that cell’s input drive

σ > 0 Contrast gain (constant) Spontaneous firing rates of u modulator cells

Boldface lowercase letters denote vectors, and boldface uppercase letters denote matrices. The variables (y, v, ŷ, x, z, a, u) are each functions of time, e.g.,
y(t), but we drop the explicit dependence on t to simplify the notation.
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Modulator cell responses are as follows:

τa
daj
dt

= −aj + ̅̅̅̅
uj

√ + aj
̅̅̅̅
uj

√
, [5]

τu
duj

dt
= −uj +∑

k

wjkykuk + ( σb0
1 + b0

)
2

. [6]

All variables in Eqs. 5 and 6 are constrained to be ≥0. Vectors a
and u represent responses of the two types of modulator cells
(firing rates proportional to membrane depolarization,
i.e., without squaring unlike Eq. 2). The need for both classes
of modulator cells is explained below (Variants of the Model).
Modulator cell responses uj represent a normalization pool,
computed from the normalization weights wjk and the principal
cell responses yj (Eq. 6 and Fig. 2, purple). Responses of the
other population of modulator cells aj are multiplied by the re-
current drive ŷj (Eq. 1), thereby determining the recurrent gain
and recurrent amplification. Responses aj depend on responses
uj (Eq. 5), so that the recurrent amplification depends on the
normalization pool.
When the input drive is constant over time, the model has a

fixed point such that the neural activity is normalized:

y = z⌊ ⌋2
σ2 +Wz2

, [7]

where the numerator is half-squared, and the quotient means
element-by-element division. Indeed, the exact form of Eqs.
1–6 was designed so that it would achieve this fixed point. To
derive Eq. 7, set the derivatives in Eqs. 1, 5, and 6 equal to 0 and
simplify (SI Appendix). The values of wjk in Eq. 6 are the nor-
malization weights, i.e., the elements of W in Eq. 7. Variants of
Eq. 7 (with various exponents) have been fit to a wide range of
experimental data (see SI Appendix for references).
Simulated neural responses in the following figures are

intended to exhibit qualitative aspects of neurophysiological
phenomena, i.e., the models have not (yet) been optimized to
replicate published data by tuning or fitting the model parame-
ters (SI Appendix). We simulated responses to drifting sinusoidal
gratings (or pairs of gratings) with various orientations, temporal
frequencies, and contrasts. Responses to transient drifting grat-
ings are more sustained than the responses to transient station-
ary gratings (54, 55). Unless otherwise stated, model parameters
were as follows: b0 = 0.2, σ = 0.1, τv = 1 ms, τa = 2 ms, and τu=1
ms. The normalization pool included all orientations (evenly
weighted) at the center of a neuron’s RF, and included only
orientations near the preferred orientation at spatial locations
surrounding the RF. Euler’s forward method was used to com-
pute Eqs. 1, 5, and 6 with time step Δt = 0.1 ms.

Recurrent Amplification, Effective Time Constant, Onset Transients,
and Oscillations. The recurrent circuit model (expressed by Eqs.
1–6 and depicted in Fig. 2) mimics many features of the dynamics
of V1 activity. We focus on response dynamics because the mean
firing rates are given by Eqs. 7 and 8, which are already known to
fit a wide range of experimental data (Fig. 1) (see SI Appendix for
references).
Simulated responses to grating stimuli with various contrasts

replicated experimental observations (Fig. 3). Response ampli-
tudes of simulated V1 simple and complex cells were exactly
equal to Eq. 8, saturating at high contrasts (Fig. 3 A and E–G).
The responses of the modulator cells increased monotonically
with contrast but did not saturate (Fig. 3B). Responses were
amplified by 100× when contrast was low but by only ∼1× when
contrast was high (Fig. 3C). The effective time constant was
correspondingly long for low contrasts but short for high

contrasts (Fig. 3D). Consequently, high-contrast stimuli evoked
rapid increases in activity, whereas low-contrast stimuli evoked
much slower and more gradual increases in activity before
achieving steady state (Fig. 3E). The rate at which activity de-
creased following stimulus offset was different from the rate at
which activity increased after lifting off from zero following
stimulus onset (Fig. 3E). These results are similar to a variety of
electrophysiological measurements (13, 28, 54–61).
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We can derive expressions for the effective gain and the ef-
fective time constant of the responses to generate experimentally
testable predictions and for fitting data. The effective gain and
effective time constant both decrease with increasing stimulus
strength. Weak stimuli are strongly amplified (large effective
gain) via the recurrent circuit, which takes a period of time (long
effective time constant). Strong stimuli are weakly amplified
(small effective gain), which happens more quickly (short ef-
fective time constant). The effective gain of each neuron in the
circuit (the ratio of each element of y to each element of z2)
depends on the input drive and the normalization weights: Wz2.
The effective time constant depends on the effective gain (SI
Appendix), so it too depends on Wz2. For stimuli composed of
drifting sinusoidal gratings or pairs of gratings:

r∝
c2t

σ2 + c2t + βc2m
, [8]

g = 1
σ2 + c2t + βc2m

, [9]

τ = τv(1 + b0
b0

) ̅̅̅
g

√
, [10]

where r is the amplitude of a principal cell’s response (e.g., the
mean firing rate of a V1 complex cell), g is the effective gain of
that neuron’s responses, and τ is that neuron’s effective time
constant (see SI Appendix for derivations). The value of ct is
the contrast of a test grating (e.g., a preferred orientation grating
restricted to the RF). The value of cm is the contrast of a mask
grating that by itself does not evoke a response. The value of 0 <
β < 1 depends on the normalization weights. Eqs. 8–10 follow
from Eq. 7 because the input drive is a weighted sum of the
input, i.e., zj is proportional to contrast. From Eq. 8, it is evident
that responses saturate (level off) when the test contrast is large
(≫σ), cross-orientation suppression results when a mask grating
is superimposed that is orthogonal to the preferred orientation,
and surround suppression results when a mask grating is added
in the region surrounding the RF, all characteristics of visual
neurophysiology (Fig. 1). From Eqs. 9 and 10, the effective gain

is large when stimulus contrast is zero (g = 100 for ct = cm = 0,
b0 = 0.2, σ = 0.1, and τv = 1 ms), and the effective time constant
is long (τ = 60 ms for those parameters). However, the gain is
small (g ∼ 1) and the effective time constant is short (τ = 6 ms)
when contrast is high.
By changing one of the model parameters (specifically, the in-

trinsic time constant of the modulator cells τu), simulated re-
sponses to high-contrast stimuli exhibited either strong transients
following stimulus onset (Fig. 3E, τu = 10 ms) or stable, high-
frequency (∼40 to 50 Hz) oscillations (Fig. 3F, τu = 1 ms), syn-
chronized across neurons. Both of these phenomena—onset
transients (54, 55, 62) and stable oscillations (14, 15,
17–30)—have been widely reported in experimental observa-
tions. Note, however, that the experimental evidence for gamma
oscillations is based on LFP, electrocorticography, electroen-
cephalogram, and magnetoencephalography measurements,
each of which depend on the synchronized membrane potential
fluctuations across a large population of neurons (63, 64); we
would not expect oscillations to be evident in measurements of
single-unit spiking (SI Appendix, Fig. S2, and see SI Appendix,
text).
For some parameter regimes, the responses exhibited onset

transients (Fig. 3E) followed by stable oscillations (Fig. 3F), but
we have not systematically characterized the parameters that do
so. The temporal filter that was used to simulate the responses of
the LGN inputs (SI Appendix) attenuates the onset transients,
without which there would typically be an initial transient
overshoot.
In these simulations, the normalization weights were all equal,

so the response transients and/or oscillations were perfectly
synchronized across the population of neurons. Consequently,
despite the complex dynamics, response ratios of neurons with
different orientation preferences were maintained throughout
each stimulus presentation, resembling some experimental re-
sults (55), and enabling an accurate readout of stimulus orien-
tation at any time point. With unequal normalization weights,
response ratios evolved over time with nonstationary readout,
analogous to other experimental results (65). Furthermore, with
unequal normalization weights, response ratios also depended
on stimulus contrast so that the simulated neural responses did
not exhibit perfectly contrast-invariant tuning curves.
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Disabling the recurrent amplification (i.e., simulating an ex-
periment in which cortical spiking is shut down) attenuated the
membrane potential response amplitudes by a factor of ∼10× at
high contrasts (Fig. 3H), while maintaining their orientation se-
lectivity, resembling experimental results (66–69).

Temporal-Frequency Tuning and Phase Advance Depend on Contrast.
Temporal-frequency tuning of both simple and complex cells
depends on stimulus contrast, and simple-cell response phase
depends on contrast (6, 10–13). It was previously proposed that
these phenomena can be explained by a recurrent normalization
model in which a neuron’s conductance (and consequently its
intrinsic time constant) depends on stimulus contrast (6, 13).
Here, we hypothesize instead that the effective time constant
depends on contrast because the amount of recurrent amplifi-
cation in the circuit decreases with increasing contrast (Eqs. 9
and 10).
Simulated temporal-frequency tuning depended systematically

on contrast, responding to a broader range of temporal fre-
quencies at high contrasts (Fig. 4). Fig. 4 A and B plot results for
a population of neurons with preferred temporal frequency ω =
0 Hz, i.e., the recurrent drive in the model acted like a low-pass
filter (SI Appendix). Increasing stimulus contrast increased the
responsivity of the simulated neurons for high temporal fre-
quencies. Fig. 4 D and E plot results for neurons with preferred
temporal frequency ω = 8 Hz, i.e., the recurrent drive in the
model acted like a bandpass filter, matching the preferred tem-
poral frequency of the simulated LGN inputs. In this case, in-
creasing stimulus contrast increased the responsivity of the
simulated neurons for both low and high temporal frequencies.
For low contrasts, temporal-frequency tuning was bandpass with
a relatively narrow bandwidth. Increasing stimulus contrast
transformed the temporal frequency tuning from bandpass to
low pass while nearly doubling the high temporal-frequency
cutoff. This behavior arises in the model because the effective
time constant depends on contrast: the effective gain decreases
with increasing contrast (Eq. 9), and the effective time constant
decreases with decreasing effective gain (Eq. 10). A shorter time
constant corresponds to a broader bandwidth, raising the high
temporal-frequency cutoff for a low-pass tuning curve, and
raising both the low and high cutoffs for a bandpass tuning curve.
Response phase also depended systematically on contrast

(Fig. 4 C and F). For simulated simple cells with low-pass
temporal-frequency tuning, response phases advanced with in-
creasing contrast, more so for higher temporal frequencies
(Fig. 4C). For simulations with bandpass temporal-frequency
tuning, response phases shifted in opposite directions for tem-
poral frequencies above and below the preferred temporal
frequency (Fig. 4F).
Results like those shown in Fig. 4 A–C have been observed

experimentally (6, 10–13): increasing phase advance and in-
creasing the high temporal-frequency cutoff with increasing
contrast. The model predicts that the effects shown in Fig. 4 D–F
may be evident for neurons with narrow temporal-frequency
tuning, e.g., perhaps direction-selective neurons in layer 4b.

Response Dynamics Depend on Stimulus Location. The dynamics of
V1 activity depends on whether a stimulus is placed in the center
or flanks of a neuron’s receptive field (8). Activity evoked by a
small grating patch extends over a cortical region of several
millimeters (depending on stimulus size, spatial frequency, and
eccentricity). Following stimulus onset, responses rise simulta-
neously over the entire active region, but reach their peak more
rapidly at the center. Furthermore, the rate of response increase
following stimulus onset is faster for higher contrasts. Following
stimulus offset, responses fall simultaneously at all locations, and
the rate of response decrease is the same for all locations and all
contrasts. It was previously proposed that these phenomena can

be explained by a recurrent normalization model in which a
neuron’s conductance (and consequently its intrinsic time con-
stant) depends on the spatial distribution of stimulus contrasts,
via the normalization weights (8). Here, we hypothesize instead
that the effective time constant (as opposed to the intrinsic time
constant) of each neuron depends on normalization weights.
Simulated responses recapitulated the experimentally mea-

sured spatiotemporal dynamics (Fig. 5). Responses lifted off si-
multaneously following stimulus onset but increased at a faster
rate for RF locations centered on the stimulus (Fig. 5, darker
colors) and for higher contrasts (Fig. 5, responses to second
stimulus presentation at t = 500 ms). Recurrent amplification
was weaker when the stimulus was presented closer to the center
of a neuron’s RF, and it was weaker for higher contrasts. Con-
sequently, the effective gain was smaller (Eq. 9) and the time
constant was shorter (Eq. 10) for these conditions. The effective
time constant following stimulus offset was ∼60 ms, regardless of
what the stimulus had been (Eqs. 9 and 10 with ct = cm = 0, b0 =
0.2, σ = 0.1, and τv = 1 ms).

Oscillations Depend on Stimulus Contrast and Size. Simulated re-
sponses exhibited high-frequency oscillations (Fig. 3F). For
grating stimuli, and in the absence of noise, these oscillations
were evident only at high (>50%) contrasts, and the oscillation
amplitudes (Fig. 6B) increased with stimulus size and contrast.
Oscillation frequencies also increased with contrast. Response
amplitudes, on the other hand, exhibited surround suppression
so they were nonmonotonic with stimulus size at high contrasts
(Fig. 6A, dark gray and black curves). The oscillations depended
indirectly on stimulus temporal frequency because the input
drive to each neuron depended on stimulus temporal frequency
with respect to the neurons’ preferred temporal frequency
(Fig. 4). That is, a lower contrast grating with a temporal fre-
quency at the peak of the tuning curve generated the same os-
cillations as a higher contrast with a temporal frequency on the
flank of the tuning curve, such that the two stimuli evoked the
same input drive amplitudes. However, the oscillations were
otherwise (beyond the dependence on input drive amplitudes)
independent of stimulus temporal frequency.
Oscillations were also evident for high-contrast plaid stimuli,

composed of a pair of orthogonal gratings, but the oscillations
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generated by plaids were smaller in amplitude and lower in
frequency than those generated by gratings of the same contrast.
Responses to plaids exhibited cross-orientation suppression; the
response evoked by a 50% contrast grating with a neuron’s
preferred orientation was suppressed by about a factor of 2 when
an orthogonal mask grating (also 50% contrast) was super-
imposed (Fig. 6A, dashed blue curve vs. third to darkest gray
curve). Oscillation amplitudes generated by 100% contrast plaids
were about midway between those generated by 50% and 100%
contrast gratings (Fig. 6B, dashed blue curve).
The oscillations depended on the strength of the normaliza-

tion pool: specifically, the product of the normalization weights
and the squared input drive Wz2. The normalization pool in-
creased with contrast because the input drive z was proportional
to contrast. The normalization pool increased with stimulus size
because it comprised a weighted sum (with nonnegative weights)
over space. The normalization pool was smaller for a 100%
contrast plaid than a 100% contrast grating. If the normalization
was untuned such that all of the normalization weights were 1,
then the normalization pool for a 100% contrast plaid composed
of two 50% contrast gratings (Wz2 = 0.52 + 0.52) would have
been equal to that for a 70.7% contrast grating (Wz2 = 0.7072).
The simulated oscillations differed for these two stimulus con-
ditions (Fig. 6B, dashed blue curve vs. second to darkest gray
curve) because the normalization pool included only orientations
near the preferred orientation at locations surrounding the RF.
All of these results are commensurate with experimental ob-

servations that oscillation amplitudes and frequencies depend
systematically on stimulus contrast, size, and spatial pattern (14,
15, 17–30), and that oscillations are linked to normalization
(14–16). Like the simulation results, oscillation amplitudes in V1

increase with stimulus contrast and size, oscillation frequencies
increase with stimulus contrast, and oscillation amplitudes are
smaller for plaids than for gratings (and even smaller for stimuli
composed of multiple components, also predicted by the model).
Using the current model configuration, simulated oscillation

frequencies increased with stimulus size, however, unlike ex-
perimental measurements that decrease with stimulus size (14,
15, 26). Previous models have tackled this problem by incorpo-
rating a mechanism that pools over large spatial regions and
provides excitatory feedback to the principal cells (26, 70). The
current family of models may, likewise, be extended by enhanc-
ing the recurrent drive with an additional weighted sum over a
larger region of the visual field (53). We have verified that doing
so may explain the observed decrease in oscillation frequency
with increasing stimulus size.

Phase Space Trajectories and Bifurcation Analysis. Oscillations
emerged for some parameter regimes of the model, not others,
and oscillations in the gamma frequency band corresponded to
restricted ranges of those parameter regimes. A bifurcation
analysis was performed to determine the ranges of parameter
values for which oscillations occur and to determine the
corresponding oscillation frequencies.
We analyzed a reduced version of the model in which each of

the variables was a scalar instead of a vector (SI Appendix, Eq.
S37), i.e., one neuron of each of the three types (y, a, and u)
instead of a population of neurons with different RF centers and
orientation preferences. We characterized the dynamics of the
model as a function of the input drive (z), the intrinsic time
constants (τv, τa, and τu), and the input gain (b0). In this reduced
model, the input was a step at time t = 0 and maintained a
constant value thereafter.
The model exhibited distinct behaviors with boundaries (state

transitions) between them (Fig. 7). When the input drive was
small, the fixed point was stable (i.e., an attractor) and simulated
responses (y) achieved steady state with no oscillations (Fig. 7A,
green point; Fig. 7B). When the input drive was large, the fixed
point was unstable with a stable limit cycle and responses
exhibited stable oscillations (Fig. 7A, orange point and dotted
gray curves; Fig. 7D). For a middle range of input drives, the
fixed point was a spiral attractor and responses exhibited oscil-
lations transiently before achieving steady state (Fig. 7A, yellow
point; Fig. 7C). The steady-state responses increased monoton-
ically with input drive until the bifurcation, at which point the
responses exhibited stable oscillations around the fixed point and
no longer achieved a steady state (Fig. 7A, intersection of solid
black, dashed black, and dotted gray curves).
The input drive that induced a bifurcation depended system-

atically on model parameters (Fig. 7E). Each panel of Fig. 7E
depicts a two-dimensional (2D) bifurcation diagram, i.e., a 2D
slice through the space of model parameters. Each panel indi-
cates the input drives for which bifurcations occurred (solid black
curves) for different values of τu, and the different panels cor-
respond to different values of τv and τa. Also indicated are the
oscillation frequencies (gray scale) when the model exhibited
stable oscillations or zero (white) otherwise.

Variants of the Model. The dynamical system expressed by Eqs.
1–6 is but one example from a family of circuit models of
normalization, each of which implements normalization via
recurrent amplification (see SI Appendix for several examples
of alternative models from this family). Some of these various
models exhibit qualitatively different dynamics such that mea-
surements of the dynamics of neural activity in V1 may be used
to distinguish between the alternatives. Each of the various
models in this family imply different circuits, such that they
may be distinguished experimentally using cell type-specific
indicators.
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For example, one of these variants can be ruled out as a
plausible model of V1 activity because it does not exhibit dy-
namics commensurate with V1 activity. This variant (SI Appen-
dix, Eq. S35) is a simpler circuit with only two types of neurons, a
principal cell and a single type of modulator cell instead of two.
The circuit has a stable fixed point such that the primary neurons
achieve steady-state responses given by the normalization
equation (Eqs. 7 and 8). We have been able to prove mathe-
matically, over a very broad range of parameter values, that the
fixed point is stable over the full range of input drives. That is,
there is no parameter regime in which the responses exhibit
stable oscillations (SI Appendix).

Discussion
We developed a family of circuit models of normalization. The
key idea is that normalization operates via recurrent amplifica-
tion, amplifying weak inputs more than strong inputs (31–34).
The modulator cells determine the recurrent gain, thereby con-
trolling the amount of recurrent amplification. Each of the
models in this family exhibits output responses with a fixed point
that follows the normalization equation (Eqs. 7 and 8) exactly,

for arbitrary (nonnegative) normalization weights. The normal-
ization equation is already known to fit a wide range of experi-
mental data (see SI Appendix for references).
These models mimic experimental observations of V1 dy-

namics linked to normalization: onset transients (Fig. 3E), the
contrast dependence of the rate of response increase following
stimulus onset and response decrease following stimulus offset
(Figs. 3 and 5), and the contrast dependence of temporal-
frequency tuning and phase advance (Fig. 4). Furthermore, for
some models in this family, the fixed point is unstable for large,
high-contrast grating stimuli, and responses exhibit oscillations
(Figs. 3F and 7). The oscillations emerge because of the recur-
rent circuitry, depending on the strength of the normalization
pool, thereby offering an explanation for the link between
gamma oscillations and normalization (14–16). Despite the
complex dynamics, ratios of the simulated responses across
neurons with different stimulus preferences may be maintained
throughout each stimulus presentation, enabling an accurate
readout of stimulus orientation (or other stimulus parameters) at
any time point following the onset of the responses.
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These models are examples of oscillatory recurrent gated
neural integrator circuits (ORGaNICs) (52, 53). ORGaNICs are
a generalization of and a biophysically plausible implementation
of long short-term memory units (LSTMs), a class of artificial
recurrent neural networks (71) that have been used in machine
learning applications (e.g., refs. 72–75). ORGaNICs may be used
to explain the complex dynamics of delay-period activity during a
working memory task, and how information is manipulated (as
well as maintained) during a delay period (53). When applied to
motor systems, these circuits convert spatial patterns of pre-
motor activity to temporal profiles of motor control activity:
Different spatial patterns of premotor activity evoke different
motor control dynamics (53). ORGaNICs are also capable of
prediction over time (52). The modulators in ORGaNICs per-
form multiple functions: normalization, controlling working-
memory maintenance and manipulation, controlling pattern
generators, gated integration/updating, time warping, reset,
controlling the effective time constant, controlling the relative
contributions of bottom-up vs. top-down connections, and
weighting sensory evidence (likelihood) and internal model
(prior) for inference and multisensory integration (52, 53, 76).
Here, we demonstrate that this same family of circuit models

can simulate the dynamics of neural activity in V1. Consequently,
this theoretical framework is applicable to diverse cognitive
processes and neural systems, and we can use V1 as a model
system for understanding neural computations and circuits in
many brain areas.

Gamma Oscillations. Narrow-band gamma oscillations have been
proposed to play a functional role in stimulus feature binding,
attention, and/or synchronizing neuronal activity to enhance
signal transmission and communication between brain areas (see
SI Appendix for references). These speculations have been met
with considerable skepticism (18, 21, 23, 26, 27, 77–81), in part
because oscillation amplitude depends strongly on stimulus
conditions (14, 15, 17–30), incommensurate with perception.
Gamma oscillations in the current family of models emerge

from the nonlinear dynamics of the recurrent circuit. Synchro-
nized spiking was not required to generate gamma oscillations.
Gamma oscillations were generated for a restricted subset of
stimulus conditions, depending on the strength of the normali-
zation pool. Consequently, oscillation amplitude was strongest
for large, high-contrast gratings, and weaker (or nonexistent) for
other spatial patterns and low contrasts, similar to experimental
results (14, 15, 17–30).
Long-wavelength stimuli have been found to generate partic-

ularly large-amplitude gamma oscillations (29, 82). It should be
straightforward to extend the current family of models to ac-
count for these results by including red-green and blue-yellow
color-opponent channels (83–85) in the LGN input, and by set-
ting the normalization weights to be large for the red-green
channel.
The current theoretical framework is most similar to

bifurcation-based models of gamma oscillations (86, 87), as op-
posed to the so-called pyramidal-interneuron gamma (PING)
and interneuron gamma (ING) mechanisms for producing
gamma oscillations (see SI Appendix for references and details).
Unlike any of the previous models of gamma oscillations, we
designed the current family of models to perform a function
(normalization), and gamma oscillations emerged as a by-
product.

Failures and Extensions. Stable oscillations were observed in the
simulation results for input drives (i.e., contrasts) above a
threshold level (above the bifurcation), but narrow-band gamma
power has been observed experimentally to change gradually
with continuous parametric variation in stimulus parameters (14,
18, 25, 26). All of the simulation results reported above were

performed in the absence of noise. With noise added to the input
drive, we observed activity in the gamma-frequency range, even
for weak inputs below the bifurcation (SI Appendix, Fig. S2 and
see SI Appendix). This suggests that gamma-band activity may be
induced by broadband noise in neural activity (70, 80); the noise
spectrum is shaped by recurrent normalization to exhibit a res-
onant peak in the gamma-frequency range.
The effective time constants of the principal cells in our sim-

ulations ranged from 6 to 60 ms, which is within a reasonable
range for in vivo cortical neurons, but the values of the intrinsic
time constants (1 to 2 ms) were ∼10 times shorter than experi-
mental measurements of intrinsic time constants (88, 89). In-
creasing the values of the time constant parameters would make
the responses sluggish and decrease the oscillation frequencies
(Fig. 7). This is a challenge for any model that relies heavily on
recurrent amplification because the recurrence takes time
(multiples of the time constant). See SI Appendix for details.
Attention is associated with both increases in the gain of vi-

sually evoked responses and increases in gamma oscillations (see
SI Appendix for references). The constant input gain parameter
b0 may be replaced by a variable vector b in Eq. 1 (while keeping
the constant b0 in Eq. 6), in combination with normalization, to
model the effects of attention on sensory responses. The ele-
ments of b determine the relative attentional gain for each
neuron in the circuit (i.e., with different RF centers and different
orientation preferences). Doing so would yield steady-state
output responses that are already known to fit experimental
measurements of response gain changes with attention (e.g., ref.
90). This would also affect the dynamics of the responses and
may be used to explain the ostensible link between attention and
gamma oscillations (15, 78).

Mechanisms. We have presented a computational theory for what
computations are performed by neural circuits in V1, not how
they are implemented. However, we can speculate about the
underlying mechanisms:

The circuit (Fig. 2) comprises an excitatory principal cell yj, an
inhibitory modulator cell aj, and another excitatory cell type uj
that makes local recurrent connections. Each type of neuron
performs a different dendritic computation (Eqs. 1, 5, and 6).

The circuit also includes inhibitory interneurons (Fig. 2, small
circles) to invert the sign of the responses, corresponding to
negative weights in the synaptic weight matrices Wzx and Wŷy.
These inhibitory neurons need not be one-to-one with their
excitatory inputs as drawn in the figure. Rather, each may
compute a weighted sum of their inputs to contribute the
terms in Eqs. 3 and 4 with negative weights.

The responses of the principal cells (Eq. 1) may be imple-
mented with a simplified biophysical (equivalent electrical cir-
cuit) model of a pyramidal cell (52, 53), in which the two terms
of Eq. 1 are computed in separate dendritic compartments.
The conductance of the first compartment determines the in-
put gain and the synaptic current in that compartment is the
input drive. The conductance and synaptic current in the sec-
ond compartment correspond, respectively, to the recurrent
gain and recurrent drive.

The input drive is computed with positive and negative synap-
tic weights, i.e., both feedforward excitation and feedforward
inhibition (Fig. 2, blue solid and dashed lines, respectively).

The recurrent drive also involves both excitation and inhibi-
tion (Fig. 2, green solid and dashed lines, respectively; SI Ap-
pendix, Eq. S7), presumably via lateral connections within V1.
These excitatory and inhibitory recurrent signals are both am-
plified by an amount that is controlled by the modulator cells,
consistent with the experimental observation that surround
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suppression involves a decrease in both recurrent excitatory
and recurrent inhibitory conductances (42).

Some principal cells may share the same modulators (e.g.,
principal cells with the same RF and orientation preference
but with different temporal phases; see SI Appendix for de-
tails), suggesting a much larger number of principal cells than
modulator cells.

The squaring nonlinearity (Eq. 2) may be approximated with a
high threshold in combination with neural noise (91–93).

The square roots in Eqs. 4 and 5 may be approximated by
synaptic depression, which acts as a compressive nonlinearity
because the probability of neurotransmitter release is lower at
higher firing rates. Alternatively, the square roots in Eqs. 4
and 5 may be replaced by adding another cell type in the cir-
cuit (SI Appendix, Eq. S39).

The modulator cells with firing rates aj may act via shunting
(52, 53), i.e., increasing conductance by a balanced increase in
excitation and inhibition without changing the total synaptic
current (6, 94).

The modulator cells may correspond to parvalbumin-expressing
(PV) (95, 96) and/or somatostatin-expressing (SOM) (97) inhib-
itory neurons. The modulator cells are expected to have large
RFs and broad orientation selectivity (reflecting properties of
the normalization pool), consistent with the response properties
of SOM and PV neurons, respectively. Furthermore, PV neu-
rons form a local recurrent circuit with excitatory cells, receiving
inputs from excitatory cells (98–100), and targeting nearby excit-
atory cells (101, 102). The modulator cell responses may de-
pend in part on loops through higher visual cortical areas
and/or thalamocortical loops (see SI Appendix for details and
references).

Modulator cell responses aj depend on a product of aj with the
square root of uj (Eq. 5). This product may be computed via
NMDA receptors with synaptic current approximately propor-
tional to the product of the presynaptic and postsynaptic firing
rates. It may instead be computed with a synaptic current from
uj and an intrinsic voltage-sensitive ion channel (89) such that
conductance is inversely proportional to membrane depolar-
ization aj (noting that firing rates aj are proportional to
membrane depolarization).

For the summation over wjk yk uk in Eq. 6, each term may be
computed in separate dendritic compartments.

Some of the effects of cross-orientation suppression may be
due to feedforward (not recurrent) mechanisms, and the sim-
ulations here incorrectly ignored the fact that some of the
normalization is inherited from the LGN inputs (see SI Ap-
pendix for details and references). Regardless, evidence sug-
gests that cortical circuits make an important contribution to
cross-orientation suppression (103), and there is consensus
that some of the effects of normalization (e.g., surround sup-
pression) are computed with cortical circuits.

Comparison with Previous Models. The current theoretical frame-
work is superior to both the original recurrent normalization
model and alternative recurrent models of normalization (4–6,
13, 41–46). First, none of the previous models converge exactly
to the normalization equation (Eqs. 7 and 8) for arbitrary nor-
malization weights. Although they may approximate weighted
normalization, the extent to which the previous recurrent models
fit the full range of experimental data is unknown. The current
family of recurrent circuit models has a mathematically tractable
solution that equals weighted normalization. This has practical
consequences, enabling us to derive closed-form expressions

(Eqs. 8–10; see also SI Appendix) for making experimentally
testable predictions and for fitting data. Second, the current
theoretical framework, unlike previous models, mimics the dy-
namics of V1 activity. Third, most of the previous models do not
rely on recurrent amplification to achieve normalization. Fourth,
the current theoretical framework is applicable to diverse cog-
nitive processes and neural systems, e.g., working memory and
motor control (52, 53), enabling us to use V1 as a model system
for understanding the neural computations and circuits in
many brain areas. Fifth, by virtue of being a generalization of
LSTMs, the current theoretical framework can solve relatively
sophisticated tasks.
The current family of models is most similar to the inhibition

stabilized network (ISN) (42) and the stabilized supralinear
network (SSN) (45), but there are also crucial differences. All of
these models include recurrent excitation that would be unstable
if inhibition was absent or held fixed. All of them also include
inhibitory stabilization, but the stabilizing inhibition in the cur-
rent model is modulatory (multiplicative), unlike ISN and SSN in
which inhibition is subtractive. Inhibitory stabilization, by itself,
does not explain the phenomena associated with normalization.
A linear recurrent model, which does not exhibit any of the
nonlinear effects associated with normalization, may be stabi-
lized by inhibition, i.e., it would be unstable if inhibition were
removed or held fixed (45, 104). Normalization phenomena arise
in the SSN model from a combination of amplification and in-
hibitory stabilization. SSN (45) and also earlier models (4–6, 13)
amplify weak inputs more than strong inputs due to a power law
relationship (e.g., half-squaring) between membrane depolar-
ization and firing rate (91–93, 105). Removing the power func-
tion from SSN yields a linear model that is qualitatively different,
in which responses increase in proportion to contrast (45). The
current family of models also includes half-squaring, but it is not
critical for normalization. Removing the squaring yields quali-
tatively similar phenomena; for example, the contrast-response
function would be proportional to c/(c + σ) rather than c2/(c2 +
σ2). Instead normalization in the current models relies on re-
current amplification via the product of recurrent gain and
recurrent drive.

Predictions. The real value of this family of recurrent circuit
models of normalization rests on whether it can push the field
forward by making quantitative and testable predictions, leading
to new experiments that may reveal novel phenomena. Some of
these predictions are as follows:

We predict that the effective time constant is contrast depen-
dent (Eqs. 9 and 10); high-contrast stimuli are integrated over
much briefer periods of time (by a factor of ∼10×) than low-
contrast stimuli. A functional advantage of doing so is to in-
crease the signal-to-noise ratio (SNR) of responses evoked by
a low-contrast stimulus. Low contrasts evoke weak input drives
with correspondingly low SNRs. Integrating these inputs over
a long period of time (i.e., with a low-pass filter or local aver-
age) increases the SNR of the neural representation. This hy-
pothesized difference in dynamics could be tested either
electrophysiologically or psychophysically.

We hypothesize a link between effective gain and effective
time constant: effective time constant should increase with
the square root of effective gain (Eq. 10). This is analogous
to the previous shunting inhibition model of normalization (6,
13), but the prediction of that model was that both the gain
and time constant change with intrinsic conductance, whereas
the effective gain and time constant in the current family of
models is a network effect, emerging from the recurrent am-
plification in the circuit. This hypothesized link may be tested
either electrophysiologically or psychophysically (106).
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The link between effective gain and effective time constant is
further constrained by the value of the input gain parameter b0
(Eq. 10). The input gain of neurons in layer 4C (the input
layer) may be estimated from intracellular measurements of
membrane potential fluctuations with and without disabling
cortical spikes (e.g., via optogenetics) as simulated in
Fig. 3 G and H. The input gain may also be manipulated with
attention (e.g., ref. 90).

We predict a link between the intrinsic time constants and
oscillation frequencies (Fig. 7E). In our simulations, oscilla-
tion frequency depended systematically on the values of the
intrinsic time constants (τv, τa, and τu), and the input gain (b0).
An experimental test of this prediction would involve manip-
ulating the intrinsic time constant (i.e., the conductance) of a

particular cell type in the circuit and/or manipulating the input
gain with attention.

The effects shown in Fig. 4 D–F (increasing responsivity of
both low and high temporal frequencies with increasing con-
trast, and shifting response phases in opposite directions for
temporal frequencies above and below the preferred temporal
frequency) may be evident for neurons with narrow temporal
frequency tuning, e.g., perhaps direction-selective neurons in
layer 4b.

Data Availability. There are no data underlying this work.

ACKNOWLEDGMENTS. Special thanks to Mike Landy, Adam Kohn, Jon
Winawer, and Lyndon Duong for comments and discussion.

1. D. J. Heeger, E. H. Adelson, Nonlinear model of cat striate cortex. Optics News 15, A-
42 (1989).

2. D. G. Albrecht, W. S. Geisler, Motion selectivity and the contrast-response function of
simple cells in the visual cortex. Vis. Neurosci. 7, 531–546 (1991).

3. D. J. Heeger, ““Nonlinear model of neural responses in cat visual cortex”” in Com-
putational Models of Visual Processing, M. S. Landy, J. A. Movshon, Eds. (MIT Press,
Cambridge, MA, 1991), pp. 119–133.

4. D. J. Heeger, Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9,
181–197 (1992).

5. D. J. Heeger, Modeling simple-cell direction selectivity with normalized, half-
squared, linear operators. J. Neurophysiol. 70, 1885–1898 (1993).

6. M. Carandini, D. J. Heeger, Summation and division by neurons in primate visual
cortex. Science 264, 1333–1336 (1994).

7. M. Carandini, D. J. Heeger, Normalization as a canonical neural computation. Nat.
Rev. Neurosci. 13, 51–62 (2011).

8. Y. F. Sit, Y. Chen, W. S. Geisler, R. Miikkulainen, E. Seidemann, Complex dynamics of
V1 population responses explained by a simple gain-control model. Neuron 64,
943–956 (2009).

9. W. Bair, J. R. Cavanaugh, J. A. Movshon, Time course and time-distance relationships
for surround suppression in macaque V1 neurons. J. Neurosci. 23, 7690–7701 (2003).

10. R. A. Holub, M. Morton-Gibson, Response of visual cortical neurons of the cat to
moving sinusoidal gratings: Response-contrast functions and spatiotemporal inter-
actions. J. Neurophysiol. 46, 1244–1259 (1981).

11. A. F. Dean, D. J. Tolhurst, Factors influencing the temporal phase of response to bar
and grating stimuli for simple cells in the cat striate cortex. Exp. Brain Res. 62,
143–151 (1986).

12. D. G. Albrecht, Visual cortex neurons in monkey and cat: Effect of contrast on the
spatial and temporal phase transfer functions. Vis. Neurosci. 12, 1191–1210 (1995).

13. M. Carandini, D. J. Heeger, J. A. Movshon, Linearity and normalization in simple cells
of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

14. M. A. Gieselmann, A. Thiele, Comparison of spatial integration and surround sup-
pression characteristics in spiking activity and the local field potential in macaque
V1. Eur. J. Neurosci. 28, 447–459 (2008).

15. S. Ray, A. M. Ni, J. H. Maunsell, Strength of gamma rhythm depends on normali-
zation. PLoS Biol. 11, e1001477 (2013).

16. D. Hermes, N. Petridou, K. N. Kay, J. Winawer, An image-computable model for the
stimulus selectivity of gamma oscillations. eLife 8, e47035 (2019).

17. C. Kayser, R. F. Salazar, P. Konig, Responses to natural scenes in cat V1.
J. Neurophysiol. 90, 1910–1920 (2003).

18. J. A. Henrie, R. Shapley, LFP power spectra in V1 cortex: The graded effect of stim-
ulus contrast. J. Neurophysiol. 94, 479–490 (2005).

19. Z. Zhou, M. R. Bernard, A. B. Bonds, Deconstruction of spatial integrity in visual
stimulus detected by modulation of synchronized activity in cat visual cortex.
J. Neurosci. 28, 3759–3768 (2008).

20. B. Lima, W. Singer, N. H. Chen, S. Neuenschwander, Synchronization dynamics in
response to plaid stimuli in monkey V1. Cereb. Cortex 20, 1556–1573 (2010).

21. S. Ray, J. H. Maunsell, Differences in gamma frequencies across visual cortex restrict
their possible use in computation. Neuron 67, 885–896 (2010).

22. M. J. Bartolo et al., Stimulus-induced dissociation of neuronal firing rates and local
field potential gamma power and its relationship to the resonance blood oxygen
level-dependent signal in macaque primary visual cortex. Eur. J. Neurosci. 34,
1857–1870 (2011).

23. X. Jia, A. Kohn, Gamma rhythms in the brain. PLoS Biol. 9, e1001045 (2011).
24. X. Jia, M. A. Smith, A. Kohn, Stimulus selectivity and spatial coherence of gamma

components of the local field potential. J. Neurosci. 31, 9390–9403 (2011).
25. S. Ray, J. H. Maunsell, Different origins of gamma rhythm and high-gamma activity

in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).
26. X. Jia, D. Xing, A. Kohn, No consistent relationship between gamma power and peak

frequency in macaque primary visual cortex. J. Neurosci. 33, 17–25 (2013).
27. D. Hermes, K. J. Miller, B. A. Wandell, J. Winawer, Stimulus dependence of gamma

oscillations in human visual cortex. Cereb. Cortex 25, 2951–2959 (2015).
28. M. W. Self et al., The effects of context and attention on spiking activity in human

early visual cortex. PLoS Biol. 14, e1002420 (2016).

29. E. Bartoli et al., Functionally distinct gamma range activity revealed by stimulus
tuning in human visual cortex. Curr. Biol. 29, 3345–3358.e7 (2019).

30. N. M. Brunet, P. Fries, Human visual cortical gamma reflects natural image structure.
Neuroimage 200, 635–643 (2019).

31. H. Adesnik, M. Scanziani, Lateral competition for cortical space by layer-specific
horizontal circuits. Nature 464, 1155–1160 (2010).

32. T. K. Sato, B. Haider, M. Häusser, M. Carandini, An excitatory basis for divisive nor-
malization in visual cortex. Nat. Neurosci. 19, 568–570 (2016).

33. H. Adesnik, Synaptic mechanisms of feature coding in the visual cortex of awake
mice. Neuron 95, 1147–1159.e4 (2017).

34. K. A. Bolding, K. M. Franks, Recurrent cortical circuits implement concentration-
invariant odor coding. Science 361, eaat6904 (2018).

35. R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin, H. H. Suarez, Recurrent excitation
in neocortical circuits. Science 269, 981–985 (1995).

36. E. M. Callaway, Local circuits in primary visual cortex of the macaque monkey. Annu.
Rev. Neurosci. 21, 47–74 (1998).

37. Y. Yoshimura, J. L. Dantzker, E. M. Callaway, Excitatory cortical neurons form fine-
scale functional networks. Nature 433, 868–873 (2005).

38. R. J. Douglas, K. A. Martin, Recurrent neuronal circuits in the neocortex. Curr. Biol.
17, R496–R500 (2007).

39. C. Kapfer, L. L. Glickfeld, B. V. Atallah, M. Scanziani, Supralinear increase of recurrent
inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10,
743–753 (2007).

40. S. Peron et al., Recurrent interactions in local cortical circuits. Nature 579, 256–259
(2020).

41. M. Carandini, D. J. Heeger, W. Senn, A synaptic explanation of suppression in visual
cortex. J. Neurosci. 22, 10053–10065 (2002).

42. H. Ozeki, I. M. Finn, E. S. Schaffer, K. D. Miller, D. Ferster, Inhibitory stabilization of
the cortical network underlies visual surround suppression. Neuron 62, 578–592
(2009).

43. T. Brosch, H. Neumann, Computing with a canonical neural circuits model with pool
normalization and modulating feedback. Neural Comput. 26, 2735–2789 (2014).

44. K. Louie, T. LoFaro, R. Webb, P. W. Glimcher, Dynamic divisive normalization predicts
time-varying value coding in decision-related circuits. J. Neurosci. 34, 16046–16057
(2014).

45. D. B. Rubin, S. D. Van Hooser, K. D. Miller, The stabilized supralinear network: A
unifying circuit motif underlying multi-input integration in sensory cortex. Neuron
85, 402–417 (2015).

46. E. Koch, J. Jin, J. M. Alonso, Q. Zaidi, Functional implications of orientation maps in
primary visual cortex. Nat. Commun. 7, 13529 (2016).

47. G. Sperling, M. M. Sondhi, Model for visual luminance discrimination and flicker
detection. J. Opt. Soc. Am. 58, 1133–1145 (1968).

48. S. Grossberg, Contour enhancement, short-term memory, and constancies in rever-
berating neural networks. Stud. Appl. Math. 52, 217–257 (1973).

49. S. Grossberg, Adaptive pattern classification and universal recoding: I. Parallel de-
velopment and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976).

50. D. J. Heeger, K. O. Zemlianova, Dynamic normalization. bioRxiv:10.1101/
2020.03.22.002634 (2020). Posted 25 March 2020.

51. D. J. Heeger, K. O. Zemlianova, Supplemental material for “Dynamic Normalization”
(NYU Faculty Digital Archive, 2020). https://archive.nyu.edu/handle/2451/61045. Ac-
cessed 25 March 2020.

52. D. J. Heeger, W. E. Mackey, ORGaNICs: A theory of working memory in brains and
machines. arXiv:1803.06288 (2018). Posted 16 March 2018.

53. D. J. Heeger, W. E. Mackey, Oscillatory recurrent gated neural integrator circuits
(ORGaNICs), a unifying theoretical framework for neural dynamics. Proc. Natl. Acad.
Sci. U.S.A. 116, 22783–22794 (2019).

54. J. R. Müller, A. B. Metha, J. Krauskopf, P. Lennie, Information conveyed by onset
transients in responses of striate cortical neurons. J. Neurosci. 21, 6978–6990 (2001).

55. D. G. Albrecht, W. S. Geisler, R. A. Frazor, A. M. Crane, Visual cortex neurons of
monkeys and cats: Temporal dynamics of the contrast response function.
J. Neurophysiol. 88, 888–913 (2002).

56. D. J. Tolhurst, N. S. Walker, I. D. Thompson, A. F. Dean, Non-linearities of temporal
summation in neurones in area 17 of the cat. Exp. Brain Res. 38, 431–435 (1980).

22504 | www.pnas.org/cgi/doi/10.1073/pnas.2005417117 Heeger and Zemlianova

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
6,

 2
02

1 

https://archive.nyu.edu/handle/2451/61045
https://www.pnas.org/cgi/doi/10.1073/pnas.2005417117


www.manaraa.com

57. A. F. Dean, D. J. Tolhurst, On the distinctness of simple and complex cells in the visual
cortex of the cat. J. Physiol. 344, 305–325 (1983).

58. W. Bair, J. R. Cavanaugh, M. A. Smith, J. A. Movshon, The timing of response onset
and offset in macaque visual neurons. J. Neurosci. 22, 3189–3205 (2002).

59. M. A. Smith, W. Bair, J. A. Movshon, Dynamics of suppression in macaque primary
visual cortex. J. Neurosci. 26, 4826–4834 (2006).

60. S. P. Burns, D. Xing, R. M. Shapley, Comparisons of the dynamics of local field po-
tential and multiunit activity signals in macaque visual cortex. J. Neurosci. 30,
13739–13749 (2010).

61. J. Zhou, N. C. Benson, K. N. Kay, J. Winawer, Compressive temporal summation in
human visual cortex. J. Neurosci. 38, 691–709 (2018).

62. J. R. Müller, A. B. Metha, J. Krauskopf, P. Lennie, Rapid adaptation in visual cortex to
the structure of images. Science 285, 1405–1408 (1999).

63. G. Buzsáki, C. A. Anastassiou, C. Koch, The origin of extracellular fields and
currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

64. E. R. Kupers, N. C. Benson, J. Winawer, A visual encoding model links magneto-
encephalography signals to neural synchrony in human cortex. bioRxiv:10.1101/
2020.04.19.049197 (2020). Posted 10 April 2020.

65. D. L. Ringach, M. J. Hawken, R. Shapley, Dynamics of orientation tuning in macaque
primary visual cortex. Nature 387, 281–284 (1997).

66. D. Ferster, S. Chung, H. S. Wheat, Orientation selectivity of synaptic input from
lateral geniculate nucleus to simple cells of cat visual cortex. Nature 380, 249–252
(1996).

67. S. Chung, D. Ferster, Strength and orientation tuning of the thalamic input to simple
cells revealed by electrically evoked cortical suppression. Neuron 20, 1177–1189
(1998).

68. K. Reinhold, A. D. Lien, M. Scanziani, Distinct recurrent versus afferent dynamics in
cortical visual processing. Nat. Neurosci. 18, 1789–1797 (2015).

69. A. D. Lien, M. Scanziani, Cortical direction selectivity emerges at convergence of
thalamic synapses. Nature 558, 80–86 (2018).

70. K. Kang, M. Shelley, J. A. Henrie, R. Shapley, LFP spectral peaks in V1 cortex: Network
resonance and cortico-cortical feedback. J. Comput. Neurosci. 29, 495–507 (2010).

71. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9,
1735–1780 (1997).

72. A. Graves, Generating sequences with recurrent neural networks. arXiv:1308.0850
(2013).

73. A. Graves, A.-r. Mohamed, G. Hinton, ““Speech recognition with deep recurrent
neural networks”” in 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), (Curran Associates, Red Hook, NY, 2013), pp. 6645–6649.

74. K. Cho et al, Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation. arXiv:1406.1078 (2014). Posted 3 June 2014.

75. I. Sutskever, O. Vinyals, Q. V. Le, ““Sequence to sequence learning with neural
networks”” in Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger, Eds. (Neural Information
Processing Systems Foundation, San Diego, CA, 2014), pp. 3104–3112.

76. D. J. Heeger, Theory of cortical function. Proc. Natl. Acad. Sci. U.S.A. 114, 1773–1782
(2017).

77. S. P. Burns, D. Xing, M. J. Shelley, R. M. Shapley, Searching for autocoherence in the
cortical network with a time-frequency analysis of the local field potential.
J. Neurosci. 30, 4033–4047 (2010).

78. M. Chalk et al., Attention reduces stimulus-driven gamma frequency oscillations and
spike field coherence in V1. Neuron 66, 114–125 (2010).

79. S. P. Burns, D. Xing, R. M. Shapley, Is gamma-band activity in the local field potential
of V1 cortex a “clock” or filtered noise? J. Neurosci. 31, 9658–9664 (2011).

80. D. Xing et al., Stochastic generation of gamma-band activity in primary visual cortex
of awake and anesthetized monkeys. J. Neurosci. 32, 13873–80a (2012).

81. D. Hermes, K. J. Miller, B. A. Wandell, J. Winawer, Gamma oscillations in visual
cortex: The stimulus matters. Trends Cognit. Sci. 19, 57–58 (2015).

82. V. Shirhatti, S. Ray, Long-wavelength (reddish) hues induce unusually large gamma
oscillations in the primate primary visual cortex. Proc. Natl. Acad. Sci. U.S.A. 115,
4489–4494 (2018).

83. L. M. Hurvich, D. Jameson, An opponent-process theory of color vision. Psychol. Rev.
64, 384–404 (1957).

84. A. M. Derrington, J. Krauskopf, P. Lennie, Chromatic mechanisms in lateral genicu-
late nucleus of macaque. J. Physiol. 357, 241–265 (1984).

85. P. K. Kaiser, R. M. Boynton, Human Color Vision, (Optical Society of America,
Washington, D.C, 1996).

86. N. Brunel, X. J. Wang, What determines the frequency of fast network oscillations
with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition
balance. J. Neurophysiol. 90, 415–430 (2003).

87. S. Keeley, Á. Byrne, A. Fenton, J. Rinzel, Firing rate models for gamma oscillations.
J. Neurophysiol. 121, 2181–2190 (2019).

88. A. Y. Tan, Y. Chen, B. Scholl, E. Seidemann, N. J. Priebe, Sensory stimulation shifts
visual cortex from synchronous to asynchronous states. Nature 509, 226–229 (2014).

89. B. Li, B. N. Routh, D. Johnston, E. Seidemann, N. J. Priebe, Voltage-gated intrinsic
conductances shape the input-output relationship of cortical neurons in behaving
primate V1. Neuron 107, 185–196.e4 (2020).

90. J. H. Reynolds, D. J. Heeger, The normalization model of attention. Neuron 61,
168–185 (2009).

91. J. S. Anderson, I. Lampl, D. C. Gillespie, D. Ferster, The contribution of noise to
contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972
(2000).

92. M. Carandini, D. Ferster, Membrane potential and firing rate in cat primary visual
cortex. J. Neurosci. 20, 470–484 (2000).

93. K. D. Miller, T. W. Troyer, Neural noise can explain expansive, power-law nonline-
arities in neural response functions. J. Neurophysiol. 87, 653–659 (2002).

94. F. S. Chance, L. F. Abbott, A. D. Reyes, Gain modulation from background synaptic
input. Neuron 35, 773–782 (2002).

95. B. V. Atallah, W. Bruns, M. Carandini, M. Scanziani, Parvalbumin-expressing inter-
neurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170
(2012).

96. A. Sanzeni et al., Inhibition stabilization is a widespread property of cortical net-
works. eLife 9, e54875 (2020).

97. H. Adesnik, W. Bruns, H. Taniguchi, Z. J. Huang, M. Scanziani, A neural circuit for
spatial summation in visual cortex. Nature 490, 226–231 (2012).

98. K. Sohya, K. Kameyama, Y. Yanagawa, K. Obata, T. Tsumoto, GABAergic neurons are
less selective to stimulus orientation than excitatory neurons in layer II/III of visual
cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci.
27, 2145–2149 (2007).

99. A. M. Kerlin, M. L. Andermann, V. K. Berezovskii, R. C. Reid, Broadly tuned response
properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67,
858–871 (2010).

100. D. D. Bock et al., Network anatomy and in vivo physiology of visual cortical neurons.
Nature 471, 177–182 (2011).

101. E. Fino, R. Yuste, Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203
(2011).

102. A. M. Packer, R. Yuste, Dense, unspecific connectivity of neocortical parvalbumin-
positive interneurons: A canonical microcircuit for inhibition? J. Neurosci. 31,
13260–13271 (2011).

103. J. J. Nassi, M. C. Avery, A. H. Cetin, A. W. Roe, J. H. Reynolds, Optogenetic activation
of normalization in alert macaque visual cortex. Neuron 86, 1504–1517 (2015).

104. M. V. Tsodyks, W. E. Skaggs, T. J. Sejnowski, B. L. McNaughton, Paradoxical effects of
external modulation of inhibitory interneurons. J. Neurosci. 17, 4382–4388 (1997).

105. D. J. Heeger, Half-squaring in responses of cat striate cells. Vis. Neurosci. 9, 427–443
(1992).

106. Y. Petrov, M. Carandini, S. McKee, Two distinct mechanisms of suppression in human
vision. J. Neurosci. 25, 8704–8707 (2005).

Heeger and Zemlianova PNAS | September 8, 2020 | vol. 117 | no. 36 | 22505

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
6,

 2
02

1 


